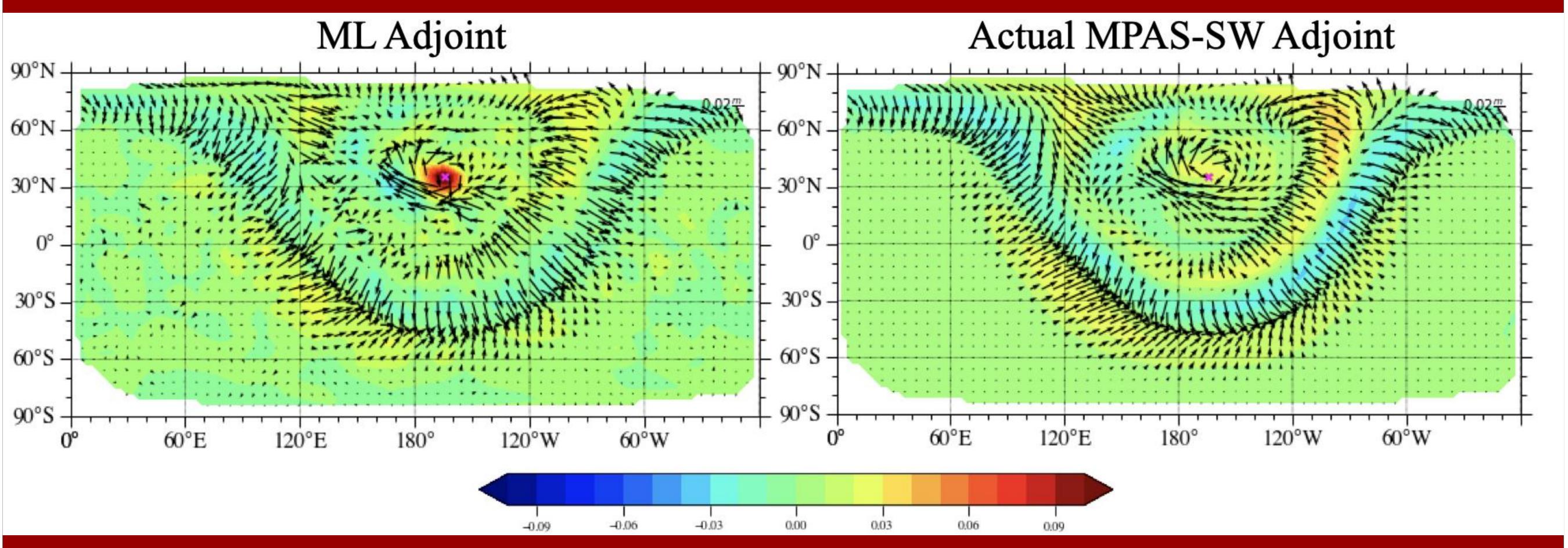
A Neural-Network Based MPAS—Shallow Water Model and Its 4D-Var Data Assimilation System

Xiaoxu Tian¹, Luke Conibear², and Jeffrey Steward² ¹ NOAA/NCEP/EMC, College Park, MD ² Tomorrow.io, Boston, MA



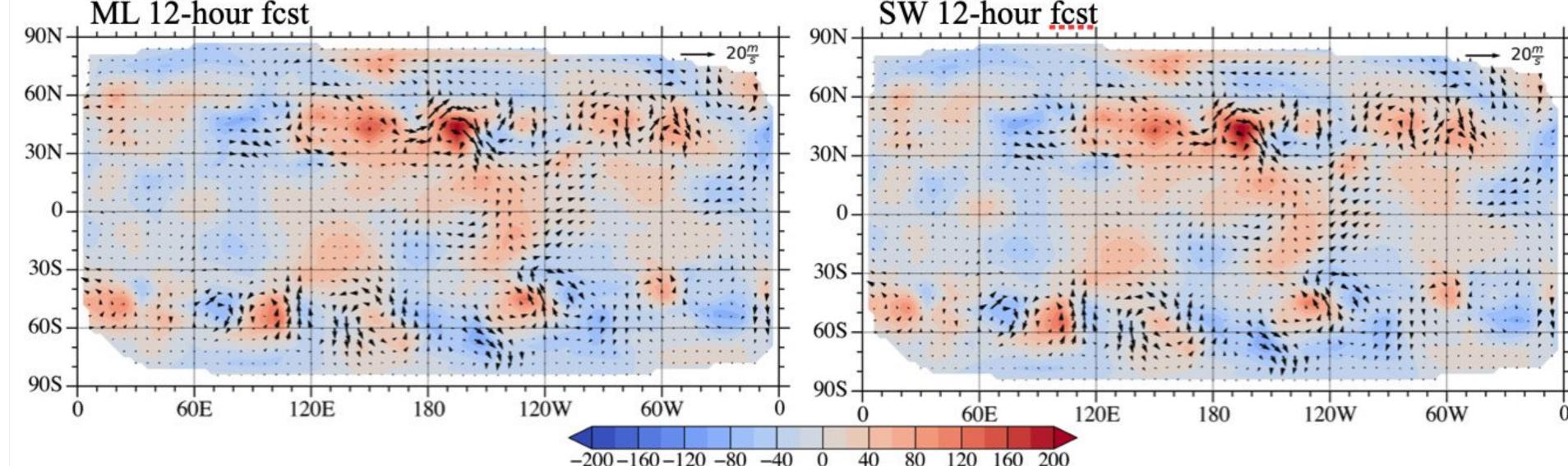
Neural-network based MPAS-Shallow Water

$$\frac{\partial h}{\partial t} + \nabla (h\mathbf{u}) = 0,$$

$$\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u}\nabla)\mathbf{u} + f\mathbf{k} \times \mathbf{u} = -g\nabla(h+b),$$



Input Layer ∈ R³ Hidden Layer ∈ R 6 Output Layer ∈ R³

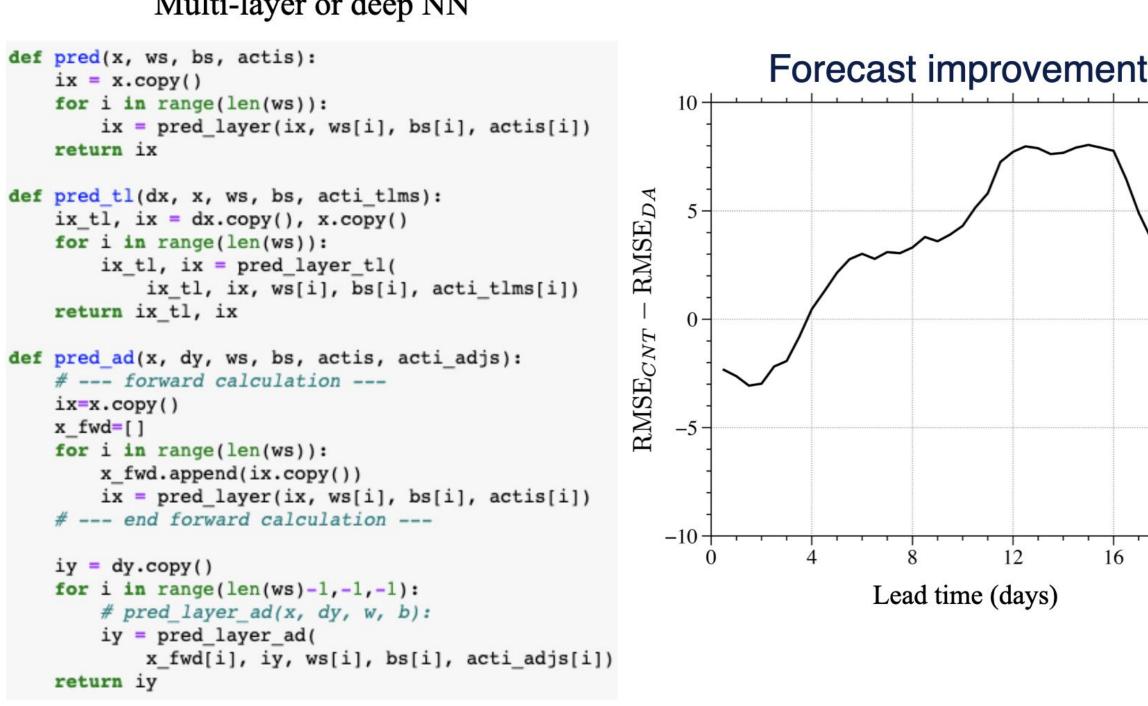


Tangent linear and adjoint in NN

Single layer NN

def pred_layer(x, w, b, acti): return acti(res) def pred_layer_tl(dx, x, w, b, acti_tlm): res_tl = np.matmul(dx, w) res = np.matmul(x, w) + breturn acti_tlm(res_tl, res) def pred_layer_ad(x, dy, w, b, acti_adj): # --- forward calculation --res = np.matmul(x, w) + b# --- end forward calculation --res_ad = acti_adj(res, dy) return np.matmul(res_ad, w.T)

Multi-layer or deep NN



Discussion and conclusions

- The potential next steps for this research are numerous. Similar techniques are readily applicable in substituting moise physics parameterizations or observation operators in a DA system
- The recent advances of ML applications in NWP are especially encouraging in this aspect
- These encouraging results demonstrate the feasibility of the tangent linear and adjoint components obtained from neural networks and the potential value of the proposed DA system