A comparison of data-driven and numerical weather forecasting models on weather extremes

Grid-point level comparisons

- We evaluate the performance of Pangu-Weather, GraphCast and IFS HRES on near-surface hot, cold and windy extremes globally using the operational forecasts for 2020 provided by the WeatherBench 2 (Rasp et al., 2024).
- ▶ The extremes are defined as the 5% most extreme events for 2020 at each grid-point, based on ERA 5.

We compute the grid-point level RMSE based on all data-points and on extreme events only, using ERA5 as ground-truth. We compare IFS HRES to the best DL model.

Tail calibration

Regional comparisons

We evaluate the tail calibration for regional and global extremes.

We repeat the analysis above at the regional level.

Hot extremes

Windspeed extremes

2m temperature Northern Hemisphere Southern Hemisphere Tropics Extra-Tropics Arctic Antarctic Europe North America North Atlantic North Pacific East Asia AusNZ Globa 3 days 1 day 5 days

Cold extremes Northern Hemisphere Southern Hemisphere Tropics Extra-Tropics Arctic Antarctic Europe North America North Atlantic North Pacific East Asia AusNZ Global 1 day 3 days 5 days 7 days10 days

Wind extremes

1 day	3 days	5 days	7 days	10 days
	1 day	1 day 3 days	1 day 3 days 5 days	1 day 3 days 5 days 7 days

QQ-plot 10% most extreme events, 5-days forecast vs ERA5

Best model in terms of RMSE. The extremes are defined as the 5% grid-point level most extreme events within the given region.

Main conclusions

Data-driven models perform best:

- for 1-3 days forecasts
- in the Tropics
- for temperature extremes on the west side of ocean basins

Data-driven models perform worse:

- ▶ for 7-10 days forecasts \rightarrow due to blurring?
- at higher latitudes \rightarrow due to use of latitude-based weights?
- for windspeed extremes \rightarrow due to separate training of u-and v-wind?
- on the east side of ocean-basins and in the middle of vast land areas \rightarrow due to lack of key input variables (e.g. soil moisture and SSTs)?

Leonardo Olivetti^{1,2,3}, Gabriele Messori^{1,2,3,4,5} Uppsala Univeristy; ² CNDS; ³ CLIMES; ⁴ Stockholm University; ⁵ Bolin Centre Correspondence: Leonardo Olivetti, leonardo.olivetti@geo.uu.se

GitHub

EGUsphere

ERC grant no. 948309