
Weak scaling results for AIFS on Leonardo and MareNostrum5 (MN5) 

on up to 512 nodes (4 GPUs per node) . Plotting efficiency (𝐸 =
𝑇1

𝑇𝑁
) 

instead of runtime allows us to compare differences at the 
interconnect level, rather than at a single node level. 
MN5 begins to scale better than Leonardo after 32 nodes. This is 
likely because MN5 has an 800Gbit/s interconnect compared to the 
400Gbit/s interconnect of Leonardo.

AIFS weak scaling efficiency on Leonardo and MareNostrum5 (N320, GNN backend, 
1024 channels per model, 1 model per node, 200 training steps, 100 validation 
steps, 3 epochs per run, median of 3 runs). Dataset was replicated across models.
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Data parallelism is a popular way to scale deep learning models 
across many GPUs. The model is replicated across GPUs and each 
model receives a unique chunk of the dataset. Model gradients are 
combined during the backward pass using all-reduce communication 
operations.
This poster presents work done optimizing the data parallelism of 
ECMWFs AIFS model. Additionally, large-scale runs on up to 
thousands of GPUs are shown on Leonardo and MareNostrum5. 

AIFS uses the “PyTorch distributed” package to scale across multiple 
nodes. This has a number of presets which can be tweaked 
depending on the machine and model you’re using.

Bucket size
As gradients are computed, they are stored in buckets of a given size 
(default 25mb). Filled buckets are synchronized across models with an 
all-reduce operation. This all-reduce happens asynchronously, leading 
to overlap of communication and gradient computation.
If network latency is a bottleneck, bucket size can be increased. This 
will decrease the number of all-reduction operations, at the cost of 
reducing the amount of overlapped computation and 
communication. 

20 training steps of an 8 node distributed run on Leonardo (GNN model, n320 res, 
1 model per node, 1024 channels per model), with different bucket sizes. 

Broadcast buffers
By default, PyTorch distributed will synchronize buffers across all 
ranks by broadcasting the buffers of rank 0 at the beginning of each 
step. Certain layers like BatchNorm require this synchronization.
AIFS does not have any such layers so BroadcastBuffers can be 
turned off,  reducing time spent in pure communication by 15%. 

WMSE error over 1000 training steps of an 8 node training run on Leonardo (GNN 
model, n320 res, 1 model per node, 1024 channels per model, same seed). WMSE is 
almost equal, suggesting broadcasting the buffers is unnecessary.

Gradient Compression

If network bandwidth is a bottleneck, “PyTorch distributed” offers 
gradient compression to alleviate this. The PowerSGD algorithm 
offers a 100x compression factor.
PowerSGD led to a 40% increase in runtime for an 8 node AIFS 
training run, due to:
1. PowerSGD requiring 2x the number of all-reduce calls. 
2. Due to algorithmic constraints, overlapping is not possible
3.  and the more efficient ring all-reduce algorithm can’t be used. 
(Zhang et al, 2023) suggests a modified PowerSGD algorithm to 
alleviate these issues, but this is not integrated into PyTorch. 
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